
Review of Lab 6

Part I: Parsing

1. What does the MiniScheme expression * parse to?

What does the MiniScheme expression * parse to?

Answer: (var-ref *)

2. What does (+ (* 2 3) 5) parse to?

What does (+ (* 2 3) 5) parse to?

Answer: (app-exp (var-ref +) ((app-exp (var-ref *) ((lit-exp 2) (lit-exp 3)))
(lit-exp 5)))

3. What does (if (< x 10) (* x 2) x) parse to?

What does (if (< x 10) (* x 2) x) parse to?

Answer: (if-exp (app-exp (var-ref <) ((var-ref x) (lit-exp 10)))
(app-exp (var-ref *) ((var-ref x) (lit-exp 2)))
(var-ref x))

4. What does (let ([f +] [A 3] [B (* 4 5)]) (f A B)) parse to?

What does (let ([f +] [A 3] [B (* 4 5)]) (f A B)) parse to?

Answer:
(let-exp (f A B)

((var-ref +) (lit-exp 3) (app-exp (var-ref *) ((lit-exp 4) (lit-exp 5))))
(app-exp (var-ref f) ((var-ref A) (var-ref B))))

Part II: Evaluationn

So * parses to (var-ref *)

What does * evaluate to?

What does * evaluate to?

(prim-proc *)

How does this happen? * parses to (var-ref *) and we evaluate a var-
ref by looking it up in the environment. In init-env all primitive
procedures are bound to prim-proc versions of themselves.

So (+ (* 2 3) 5) parses to
(app-exp (var-ref +) ((app-exp (var-ref *) ((lit-exp 2) (lit-exp 3)))

(lit-exp 5)))

We know this evaluates to 11. But how does it get evaluated?

How does
(app-exp (var-ref +) ((app-exp (var-ref *) ((lit-exp 2) (lit-exp 3)))

(lit-exp 5)))
get evaluated?

It is an app-exp, so we call apply-proc with evaluated (var-ref +) as the
procedure and the list of evaluated arguments.

First argument: we evaluate (app-exp (var-ref *) ((lit-exp 2) (lit-exp 3)))
by calling (apply-proc (prim-proc *) (2 3)), which gives 6
Second argument: we evaluate (lit-exp 5) and get 5

So altogether we call (apply-proc (prim-proc +) (6 5)) and this gives 11.

So (if (< x 10) (* x 2) x) parse to
(if-exp (app-exp (var-ref <) ((var-ref x) (lit-exp 10)))

(app-exp (var-ref *) ((var-ref x) (lit-exp 2)))
(var-ref x))

How does it get evaluated in an environment where x is bound to 12?

How is
(if-exp (app-exp (var-ref <) ((var-ref x) (lit-exp 10)))

(app-exp (var-ref *) ((var-ref x) (lit-exp 2)))
(var-ref x))

evaluated in an environment where x is bound to 12 ?

We first evaluate the condition. It is an app-exp so we call
(apply-proc (prim-proc <) (12 10)) (using the fact that x is bound to 12)
This should evaluate to False, so we evaluate the second branch of the
expression, which is the third field of the if-exp, which is (var-ref x). We
evaluate this by looking up x in the environment, which gives 12.

Last question!
So (let ([f +] [A 3] [B (* 4 5)]) (f A B)) parses to

(let-exp (f A B)
((var-ref +) (lit-exp 3) (app-exp (var-ref *) ((lit-exp 4) (lit-exp 5))))
(app-exp (var-ref f) ((var-ref A) (var-ref B))))

How does it get evaluated?

How is this evaluated?
(let-exp (f A B)

((var-ref +) (lit-exp 3) (app-exp (var-ref *) ((lit-exp 4) (lit-exp 5))))
(app-exp (var-ref f) ((var-ref A) (var-ref B))))

First we evaluate the binding list values
(var-ref +) evaluates to (prim-proc +)
(lit-exp 3) evaluates to 3
(app-exp (var-ref *) ((lit-exp 4) (lit-exp 5))) evaluates to 20

So we evaluate the body in an extended environment where (f A B)
are bound to ((prim-proc +) 3 20)

(continued next slide)

That is, we need to evaluate (app-exp (var-ref f) ((var-ref A) (var-ref B)))
in where (f A B) are bound to ((prim-proc +) 3 20)

To do this we evaluate (var-ref f) by looking up f in this environment and
getting (prim-proc +),
we evaluate (var-ref A) by looking up A and getting 3,
we evaluate (var-ref B) by looking up B and getting 20

So we call (apply-proc (prim-proc +) (3 20)) and this gives 23.

That was 8 questions. How many did you get right?

